NSSO 75th Round Social Consumption Health Survey

Stata codes for generating tables from unit level data as per the published report is given below:

Before generating tables, you need to complete extraction and merging exercises.

Stata codes:

*Statement 3.1: PPRA by gender
use “75 Round_Social Conmeanption Health\Stata Data\Level All data.dta” table vari_4 [MULT ], contents(mean ####) row format(%15.0f) table vari_4 [MULT ] if vari_3 !=., contents(mean ####) row format(%15.0f)
*Statement 3.2: PPRA by gender and sector table Sector vari_4 [MULT ], contents(mean ####) row format(%15.0f) table Sector vari_4 [MULT ] if vari_5 !=., contents(mean ####) row format(%15.0f) *Statement 3.3: PPRA in the major states of India
table State [MULT ], contents(mean ####) row format(%15.0f) table State [MULT ] if vari_8 !=”5”, contents(mean ####) row format(%15.0f)
*Statement 3.4: Percentage break-up of ailments in rural and urban India by nature of ailment
table vari_13 Sector , contents(mean weight ) row format(%15.0f)
*Statement 3.5: Percentages of ailments treated by allopathy and AYUSH, all-India table vari_81 vari_4 Sector , contents(mean weight ) row col format(%15.0f)
*Statement 3.6: Percentage break-up of treated ailments by type of healthcare service provider, all-India
table vari_5 Sector if vari_13 !=., contents(mean weight ) row col format(%15.0f) clear
*Statement 3.7: Proportion of persons treated as in-patient by age-group and sector
table Sector [MULT ], contents(mean ####) row format(%15.0f)
*Fig 3 Proportion of persons treated as in-patient by gender
table vari_3 [MULT ], contents(mean ####) row format(%15.0f)
*Statement 3.8: Inter-state variation in proportion of persons treated as in-patient
table vari_7 State [MULT ] , contents(mean PRO_HOSPI ) row format(%15.0f)
*Statement 3.9: Percentage break-up of ailments for hospitalisation cases
table vari_9 vari 4Sector [MULT ], contents(mean PRO_HOSPI ) row format(%15.0f)
*Statement 3.10: Percentage break-up of hospitalisation cases by type of hospital table vari_10 Sector [MULT ] if vari_7==8, contents(mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.11: Percentage share of government hospitals in hospitalisation cases in the major States
table State vari_5 [MULT ] if vari_2==”2”, contents(mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.12: Percentage break-up of hospitalisation cases in India by quintile class of household expenditure, separately for each sector and gender *Statement 3.13: Break-up (%) of hospitalization cases by major source of finance of expenses
table vari_16 Sector [MULT ] if vari_1==”3”, contents(mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.14: Percentage break-up of persons by health expenditure coverage type
table vari_47 Sector [MULT ], contents(mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.15: Average medical expenditure per hospitalisation case by type of hospital
table vari_6 Sector [MULT ] if vari_4>45, contents(mean PRO_HOSPI ) row col format(%15.0f)
table vari_6 Sector [MULT ] if vari_4>45, contents(mean vari_11 ) row col format(%15.0f)
*Statement 3.16: Average medical expenditure during hospital stay per hospitalisation case for selected categories of ailments
table vari_7 vari_5 [MULT ] if vari_3==”4”, contents(mean PRO_HOSPI ) row col format(%15.0f)
table vari_7 vari_5 [MULT ] if vari_3==”4”, contents(mean vari_1 ) row col format(%15.0f)
*Statement 3.17: Break-up of average medical expenditure (Rs.) for hospitalisation

table vari_6 Sector [MULT ] if vari_5<5, contents(mean PRO_HOSPI ) row col format(%15.0f) table vari_6 Sector [MULT ] if vari_6<5, contents(mean vari_9 mean vari_10) row col format(%15.0f)
*Statement 3.18: Percentage of hospitalisation cases involving reimbursement
table vari_1 Sector [MULT ] if vari_2<3, contents(mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.19: Amount reimbursed as a percentage of total medical expenses
table vari_6 Sector [MULT ] if vari_4<3, contents(mean vari_8 ) row col format(%15.0f)
*Statement 3.20: Average medical expenditure per treated ailment by healthcare service provider
table vari_11 Sector [MULT ] if vari_12==”2″, contents(mean vari_15 mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.21: Average medical expenditure (for non-hospitalisation cases) by nature of treatment and type of hospital
table vari_12 Sector vari_10 if vari_8 ==”5″ [MULT ], contents(mean vari_31 mean PRO_HOSPI ) row col format(%15.0f)
*Statement 3.25: Percentage distribution of institutional childbirths by type of delivery and type of hospital
table vari_3 vari_2 Sector [MULT ] if #### & vari_4 <5, contents(mean PRO_AILMENT ) row col format(%15.0f) *Statement 3.26: Percentage of hospital childbirths receiving surgery, by type of hospital and type of delivery
table vari_4 vari_6 Sector [MULT ] if #### & vari_4 <51 & vari_12 !=”1″, contents(mean PRO_AILMENT ) row col format(%15.0f)
*Statement 3.27: Percentage of childbirths receiving surgery free of cost by type of hospital
table var6_6 Sector [MULT ] if #### & vari_2 <51 & vari_12 !=”1″, contents(mean PRO_AILMENT ) row col format(%15.0f) *Statement 3.24: Percentage break-up of childbirths by place (not matching exactly)
table Sector vari_122 [MULT ] if vari_2==”1” & vari_6!=”3″, contents(mean PRO_AILMENT ) row col format(%15.0f)


TO GET COMPLETE END TO END SOLUTION FROM EXTRACTION TO ESTIMATION, FEEL FREE TO ASK ON THE FOLLOWING:


Support Form

E-MAIL ID: NSSO.DATAMANAGEMENT@GMAIL.COM


“There is no need to suffer silently and there is no shame in seeking support”

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s